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THE 3-CLASS GROUPS OF Q( 3
√
p) AND ITS NORMAL CLOSURE

JIANING LI AND SHENXING ZHANG

Abstract. We determine the 3-class groups of Q( 3
√
p) and K = Q( 3

√
p,
√
−3)

when p ≡ 4, 7 mod 9 is a prime and 3 is a cube modulo p. This confirms a
conjecture made by Barrucand-Cohn, and proves the last remaining case of a
conjecture of Lemmermeyer on the 3-class group of K.

1. Introduction

Let p be a prime. Let F = Q( 3
√
p) and K = Q( 3

√
p, µ3) the normal closure of F .

Let AF (resp. AK) be the 3-class group (i.e., 3-Sylow subgroup of the class group)
of F (resp. K). The paper aims to prove the following result.

Theorem 1.1. Assume that p ≡ 4, 7 mod 9 is a prime such that the cubic residue

symbol
(

3
p

)

3
= 1. Then AF

∼= Z/3Z and AK
∼= (Z/3Z)2.

This result confirms a conjecture made by Barrucand-Cohn in [BaC70, §8], and
later mentioned by Barrucand-Williams-Baniuk, Williams and Gerth in [BWB76,
§8, Conjecture 1], [Wil82, p. 273] and [Ger05, p. 474]. Theorem 1.1 also completes
a proof of a Lemmermeyer’s conjecture on AK in [Lem10, Conjecture 5, §1.10] when
combining with the following known results:

(1) If p ≡ 2 mod 3, then the groups AF and AK are both trivial; see [Hon71].
(2) If p ≡ 1 mod 3, then AF is cyclic non-trivial and rk(AK) = 1 or 2 where

rk(AK) is the 3-rank of AK ; see [Ger05].
(3) If p ≡ 1 mod 9, then rk(AK) = 2 if and only if 9 divides |AF |; see [CaE05,

Lemma 5.11] and [Ger05].

(4) If p ≡ 4, 7 mod 9 and
(

3
p

)

3
6= 1; then AF

∼= AK
∼= Z/3Z; see [BWB76] or

[Ger05].

We give two consequences of Theorem 1.1. Let EK be the group of units of K.
Let E′

K be the subgroup of EK generated by the units of non-trivial subfields of
K. Write q = [EK : EK′ ]. One has ([BaC71, Theorem 12.1, 14.1])

q = 1 or 3 and hK =
q

3
h2
F .

Here hK (resp. hF ) is the class number of K (resp. F ). Thus, if p ≡ 4, 7 mod 9

and
(

3
p

)

3
= 1, Theorem 1.1 implies that q = 3. This confirms a conjecture made

in [ATIA20].
Assume p ≡ 4, 7 mod 9. Theorem 1.1 implies that the norm equation NF/Q(x) =

3 has a solution x ∈ OF if and only if
(

3
p

)

3
= 1, as mentioned in [Wil82, p. 273].

Since OF = Z[ 3
√
p], this is to say, the Diophantine equation

x3
1 + px3

2 + p2x3
3 − 3px1x2x3 = 3

has solutions (x1, x2, x3) ∈ Z if and only if
(

3
p

)

3
= 1.
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2. The proof

2.1. Chevalley’s ambiguous class number formula. We first review the S-
version of Chevalley’s ambiguous class number formula which will be used. For a
finite set S of prime ideals of a number field L, the S-class group of K is defined as

ClK,S := ClK/〈[p] : p ∈ S〉,
where ClK denotes the class group of K and [p] denotes the ideal class of p. Let
EK,S := O×

K,S denote the group of S-units of K. Let L/K be a finite cyclic
extension with Galois group G. For a finite set S of prime ideals of K, we denote
by ClL,S = ClL,SL

for simplicity, where SL is the set of primes of L lying above
those in S. Chevalley’s ambiguous class number formula states that the order of
the G-invariant subgroup of ClL,S is given by

|ClGL,S| = |ClK,S | ·

∏

v/∈S

ev ·
∏

v∈S

evfv

[L : K] · [EK,S : EK,S ∩NL×]
. (2.1)

Here the first product runs over all places of K not in S, ev and fv are the ramifi-
cation index and the residue degree of v respectively, and N = NL/K is the norm
map. For a proof of this formula, see [LiY20] for example. The unit index in (2.1)
can be computed by Hilbert symbols provided that L/K is a Kummer extension.

Proposition 2.1. Let L/K be a cyclic extension of degree d and µd ⊂ K. Then
L = K( d

√
a) for some a ∈ K. Let Ram be the set of ramified places of K. Define

ρ :
EK,S

(EK,S)d
−→

∏

v∈S∪Ram

µd

x 7−→
(

(x, a

v

)

d

)

v∈S∪Ram

.

Then the kernel of ρ is given by

Ker ρ =
EK,S ∩NL×

(EK,S)d

and hence the size of the image is given by

|Im(ρ)| = [EK,S : EK,S ∩NL×],

which is at most d|S∪Ram|−1.

Proof. This result is a standard direct consequence of local class field theory, Hasse’s
norm theorem, and the product formula for Hilbert symbols. For details, see
[LOXZ20, §2]. �

If σ ∈ Aut(K) and v is a prime of K, we have (loc. cit.)

σ

(

a, b

v

)

d

=

(

σ(a), σ(b)

σ(v)

)

d

, a, b ∈ K×. (2.2)

For our applications, the degree [L : K] is a power of a prime ℓ. For any finite
generated abelian group A, we denote by Aℓ = A ⊗ Zℓ where Zℓ is the ring of
ℓ-adic integers. If A is finite, Aℓ is the ℓ-primary subgroup of A. If there is no
ambiguity, we write a for a ⊗ 1 ∈ Aℓ for a ∈ A. Clearly, the formula (2.1) still

holds by replacing (ClL,S)
G and ClK,S with

(

(ClL,S)ℓ
)G

= (ClGL,S)ℓ and (ClK,S)ℓ
respectively.

The following well known fact which is proved by counting the orbits of the
G-action or by Nakayama’s Lemma will be used frequently:

(ClL,S)ℓ = 0 if and only if (ClGL,S)ℓ = 0.
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2.2. Proof of Theorem 1.1. From now on, assume p ≡ 1 mod 3. Denote by

• k = Q(µ3);
• M+ the unique cubic subfield of Q(µp), which is real;
• M = M(µ3) a quadratic extension of M+;
• L = KM = M( 3

√
p, µ3);

• AT = (ClT )3 for any number field T .

L = KM

K = Q( 3
√
p, µ3)

♥♥♥♥♥♥♥♥♥♥♥♥♥

FM+ M = kM+

❖❖❖❖❖❖❖❖❖❖❖

F = Q( 3
√
p)

♥♥♥♥♥♥♥♥♥♥♥♥♥

k = Q(µ3)

PPPPPPPPPPPP

♣♣♣♣♣♣♣♣♣♣♣♣

M+

◆◆◆◆◆◆◆◆◆◆◆◆◆

Q

PPPPPPPPPPPPPP

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

Proposition 2.2. Assume p ≡ 1 mod 3.
(1) There exists α ∈ Ok such that M = k( 3

√
pα) and p = αα;

(2) AM = 0 if and only if p ≡ 4, 7 mod 9.

Proof. (1) Since p ≡ 1 mod 3, we can write p = αα for some α ∈ Ok. Note that (α)
and (α) are exactly the ramified primes of k in M . Now, since the class number of
k is 1 and M/k is a Kummer extension, we have

M = Q( 3
√
γ) and γ = ζa3α

bαc

with a, b, c ∈ {0, 1, 2} and bc 6= 0. Since (3 − a, 3− b, 3− c) gives the same field as

(a, b, c), we conclude that M = k( 3
√

ζa3 p) or k(
3
√

ζa3 pα) for some a = 0, 1, 2. Since

M is abelian over Q but k( 3
√

ζa3 p)/Q is not, M must coincide with k( 3
√

ζa3 pα). By
replacing α with ζa3α, we have M = k( 3

√
pα) and p = αᾱ. This proves (1).

(2) We apply (2.1) and Proposition 2.1 to the cyclic cubic extension M/k. Let
ι : k →֒ Qp be the embedding induced by (α). Then we have the following equalities
of cubic Hilbert symbols:

(

ζ3, pα

α

)

= ι−1

(

ι(ζ3), pι(α)

Qp

)

= ι−1

(

ι(ζ3), ι(α)

Qp

)−1

= ζ
(p−1)/3
3 . (2.3)

Hence this symbol as well as the index [Ek : Ek ∩ NM×] is trivial if and only if
p ≡ 1 mod 9. Thus

|AG
M | = 32

3 · [Ek : Ek ∩NM×]
= 1

if and only if p ≡ 4, 7 mod 9. By Nakayama’s lemma, it turns out that AM is trivial
if and only if p ≡ 4, 7 mod 9. This completes the proof of Proposition 2.2. �

Let p (resp. p′) be the unique prime of M (resp. K) lying above αOk. Then

αOM = p3 and αOK = p′3.

Proposition 2.3. Assume that p ≡ 1 mod 3 and
(

3
p

)

3
= 1.

(1) The extensions L/K and FM+/F are both abelian unramified cubic exten-
sions.

(2) The primes p and p′ both split in L.



4 JIANING LI AND SHENXING ZHANG

Proof. (1) Since L = KM+, we have that L/K is unramified outside the primes
above p. Denote by I(α) the inertia group of (α) = αOk in the abelian extension
L/k. By local class field theory and noting that the completion of k at (α) is Qp,
we have a surjection

Z×
p ։ I(α).

It follows that I(α) can not be Gal(L/k) ∼= (Z/3Z)2. On the other hand, I(α) is
non-trivial since (α) is ramified in K and M . This shows that p and p′ must be
unramified in L. An entirely similar argument for the prime (α) = αOk shows that
L/M and L/K are both unramified outside the primes above α. This shows that
L/K is unramified everywhere.

For the extension FM+/F , first note that it is unramified outside 3
√
pOF as

M+/Q is unramified outside p. We claim that 3
√
pOF is also unramified in FM+.

Otherwise, since K/F is unramified at 3
√
pOF , the prime of K above 3

√
p would be

ramified in L. But this contradicts that L/K is unramified whence the claim holds.
This proves (1).

(2) We have just shown that FM+ is contained in the Hilbert class field of F .
By class field theory, the principal prime 3

√
pOF splits in FM+. It follows that p′

and p both split in L. �

Lemma 2.4. (1) If p ≡ 4, 7 mod 9, then 3 is totally ramified in K.
(2) If p ≡ 1 mod 3 and 3 is a cube modulo p, then (1 − ζ3)Ok splits in M .

Proof. (1) Since (x+ p)3− p is an Eisenstein polynomial, 3 is totally ramified in F .
Since 3 is also ramified in k, it follows that 3 is totally ramified in K by counting
the ramification degrees.

(2) Fix the canonical isomorphism

(Z/pZ)× ∼= Gal(Q(µp)/Q)

a 7→ (σa : ζp 7→ ζap ).

By definition, M+ is the subfield of Q(µp) fixed by (Z/pZ)×3. Our assumptions
imply that σ3 is trivial on M+ whence 3 splits in M+. It follows that (1 − ζ3)Ok

must split in M . �

We need the following elementary fact on the local field Q3(µ3).

Lemma 2.5. If a, b ∈ Z with 3 ∤ ab, then the cubic Hilbert symbol of a and b in
Q3(µ3) is trivial.

Proof. By convergence of the Taylor expansion of (1 + 9x)1/3 on Z3[µ3], every
element in 1 + 9Z3[µ3] is a cube. Note that −1 is a cube whence the cubic Hilbert

symbol
(

a,a
Q3(µ3)

)

= 1. Thus, we only need to show the triviality of the symbol

(

4, 7

Q3(ζ3)

)

=

(

4, 2

Q3(ζ3)

)

=

(

2, 2

Q3(ζ3)

)2

= 1. �

Theorem 2.6. Assume that p ≡ 4, 7 mod 9 and
(

3
p

)

3
= 1. Then AL is non-trivial

and 3 does not divides |ClL,{p}|.

Proof. We first apply (2.1) on L/M with S = ∅ to prove 3 divides |AG
L | where

G = Gal(L/M). By Proposition 2.3 and Lemma 2.4, exactly the three primes
l, σ(l), σ2(l) ofM lying above (1−ζ3)Ok are ramified in L/M , where σ is a generator
of Gal(M/k). By Proposition 2.2, we know that |AM | = 1. It remains to compute
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the unit index. Note that L = M( 3
√
p). To apply Proposition 2.1, we define

ρ : EM −→ µ3
3

u 7−→
(

(u, p

l

)

,

(

u, p

σ(l)

)

,

(

u, p

σ2(l)

))

.

Since M/M+ is a CM-extension, the group (EM )3 is generated by (EM+)3 and ζ3
by [Was82, Theorem 4.12]. The completion of M+ at a prime above 3 is Q3. It
follows that η ≡ a mod 9 with a ∈ Z for any η ∈ EM+ . Then by Lemma 2.5,

|ρ(EM+)| = 1. (2.4)

Now we compute ρ(ζ3). Since σ(ζ3) = ζ3, by (2.2) we have
(

ζ3, p

l

)

=

(

ζ3, p

σ(l)

)

=

(

ζ3, p

σ2(l)

)

.

By Lemma 2.4, the completion of M at l is Q3(µ3). Applying the product formula
for cubic Hilbert symbols on the field Q(µ3) gives

(

ζ3, p

(α)

)(

ζ3, p

(α)

)(

ζ3, p

(1 − ζ3)

)

= 1.

By (2.3) and our assumption p ≡ 4, 7 mod 9, we obtain that
(

ζ3, p

(1− ζ3)

)

6= 1 and

(

ζ3, p

Q3(µ3)

)

6= 1. (2.5)

This proves that ρ(ζ3) = ζ±1
3 (1, 1, 1). Combining with (2.4), we conclude that

|ρ(EM )3| = 3. Then Chevalley’s formula gives

|AG
L | =

33

3× 3
= 3.

In particular, |AL| ≥ 3.

Next, we apply Chevalley’s formula on L/M with S = {p} to compute ClGL,{p}.
Define

β =
3
√
pα

NQ(µp)/M+(1− ζp)
.

Note that β3 generates the ideal αOM whence βOM = p. It follows that (EM,{p})3
is generated by β, ζ3 and EM+ . We claim that

(

β, p

l

)

6=
(

β, p

σ(l)

)

.

Indeed, by (2.2), the right hand side equals the Hilbert symbol of σ−1(β) and p at
l. Note that σ−1(β) = ζ±1

3 βη for some η ∈ EM+ . Thus the inequality follows from
(2.4) and (2.5). By Proposition 2.1, this shows that the index

[EM,{p} : EM,{p} ∩NL×] = 9.

By Proposition 2.3, the prime p splits in L. It follows from (2.1) that 3 does not

divide |ClGL,{p}| whence 3 does not divide |ClL,{p}| by Nakayama’s Lemma. This
completes the proof. �

Proof of Theorem 1.1. By Theorem 2.6, AL is non-trivial. It follows that, by

Nakayama’s lemma, we have |AGal(L/K)
L | ≥ 3. Since L/K is unramified every-

where, by Hasse’s norm theorem and local class field theory (or Proposition 2.3),
we have the unit index [EK : EK ∩N(L×)] = 1. Then applying Chevalley’s formula
with S = ∅ to the extension L/K gives

|AK | ≥ 9.
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Recall that p′ is the prime ofK lying above αOk. Note that p
′OL = pOL, we have

ClL,{p′} = ClL,{p} by definition. Since 3 does not divide |ClL,{p′}| by Theorem 2.6
and p′ splits in L by Proposition 2.3, Chevalley’s formula with S = {p′} will imply
that (ClK,{p′})3 ∼= Z/3Z if we can show that

[EK,{p′} : EK,{p′} ∩N(L×)] = 1.

Because p′ splits in L/K by Proposition 2.3, the local extension at p′ is trivial.
Thus any {p′}-unit is a local norm at p′ whence is a local norm at every place of
K as L/K is unramified. By Hasse’s norm theorem, the above unit index is indeed
trivial.

The equality p′3 = αOK implies that |ClK | ≤ 3|ClK,{p′}|. It follows that
|AK | ≤ 9.

Hence |AK | = 9 and then |AF | = 3 by [Hon71, Lemma 1].
Let τ be the non-trivial element of ∆ = Gal(K/F ). Since ∆ is of order 2, we

have a decomposition of Z3[∆]-modules

AK = A+
K ⊕A−

K , where A±
K = {a ∈ AK |τ(a) = a±1}.

It is well known that |A+
K | = |AF | = 3 (for example, using (2.1)). Thus AK has

a direct factor Z/3Z. This implies that AK
∼= (Z/3Z)2, completing the proof of

Theorem 1.1. �

René Schoof informed us that, using Theorem 1.1, one can go back to improve
Theorem 2.6. Under the assumptions of Theorem 2.6, we indeed have

AL
∼= Z/3Z. (2.6)

We write his argument as follows. In what follows, let G = Gal(L/k) so that
G ∼= (Z/3Z)2.

Lemma 2.7. For any subgroup H of G of order 3, we have |AH
L | = 3.

Proof. The nontrivial intermediate fields of L/k are K,M, k( 3
√
α), k( 3

√
ᾱ), where

α is as in Proposition 2.2. The case H = Gal(L/M) has been proved in the
proof of Theorem 2.6. For H = Gal(L/K), as in proof of Theorem 1.1, one has

|AH
L | = |AK |

3 = 3; here the last equality is by Theorem 1.1.
Now consider the case H = Gal(L/k( 3

√
α)). We first prove Ak( 3

√
α) = 0 by the

same method as in Proposition 2.2. There are precisely two primes (α), (1 − ζ3)

of k ramified in k( 3
√
α)/k. Since p ≡ 4, 7 mod 9, we have

(

ζ3,α
(α)

)

6= 1 as in (2.3).

Then Chevalley’s formula for k( 3
√
α)/k and Nakayama’s lemma give Ak( 3

√
α) = 0.

Now there are precisely three primes of k( 3
√
α) ramified in L/k( 3

√
α) which are the

primes lying above ᾱ. In particular, the completion at such a prime P is isomorphic

to Qp. Note that L = k( 3
√
α)( 3

√
p). Hence

(

ζ3,p
P

)

6= 1 as p ≡ 4, 7 mod 9. Applying

Chevalley’s formula to L/k( 3
√
α) gives |AH

L | ≤ 3 whence it is 3 by Nakayama’s
lemma. The case H = Gal(L/k( 3

√
α)) can be proved in an entirely similar way. �

Lemma 2.8 (Schoof). Let R be a complete local Noetherian ring with maximal
ideal m. Suppose that dimm/m2 > 1. Let J ⊂ m be an ideal for which J + (x) = m

for every x ∈ m−m2. Then J = m.

Proof. We may replace J by J + m2, because if J + m2 is equal to m, then also
J = m by Nakayama’s lemma. So we have m2 ⊂ J . Then W = J/m2 is a sub
vector space of V = m/m2 and we know that W + v = V for every non-zero vector
v ∈ V . Since dimV > 1, W cannot be zero. So we can find a non-zero v ∈ W . It
follows that W = W + v = V and we are done. �
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Proof of (2.6). Clearly, AL is a module over the complete local ring R = Z3[G].
The maximal ideal m of R is generated by the elements s − 1 with s ∈ G. By
Theorem 2.6, AL is cyclic over the ring R. So, AL = R/J for some ideal J ⊂ R.
Let s ∈ G be a nontrivial element and write H for the subgroup generated by s.
We have an exact sequence

0 → AH
L → AL

s−1−−→ AL → AL/(s− 1)AL → 0.

The rightmost term has order 3 for every nontrivial s ∈ G by Lemma 2.7. In other
words, J + (s − 1) = m for every nontrivial s ∈ G. Since m/m2 is generated by
the elements s− 1 (s ∈ G) as a R/m-vector space, it follows from Lemma 2.8 that
J = m. Hence |AL| = 3. �
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